
autopew Documentation
Release 0.1.4

Morgan Williams & Louise Schoneveld

May 13, 2022

Getting Started

1 Introduction 1

2 Why use autopew 3

3 What is autopew not? 5

4 Getting Started 7

5 Examples 9

6 Development 19

7 References 35

Python Module Index 37

Index 39

i

ii

CHAPTER 1

Introduction

autopew is designed for arbitrary translation between planar/2D Cartesian coordinate systems using affine transforms
and human-in-the-loop workflows.

This is applied to integrating coordinate systems across analytical instrumentation, with each instrument typically
having its own individual coordinate systems based on imagery and/or a sample stage. autopew also includes functions
for importing and exporting files, for automated generation of point sets within a relevant format for each piece of
analytical instrumentation. autopew outputs currently included a .scancsv file which can be directly imported into
Chromium laser ablation navigation software.

1

usage/outputs.html
http://www.teledynecetac.com/support/software

autopew Documentation, Release 0.1.4

2 Chapter 1. Introduction

CHAPTER 2

Why use autopew

autopew is designed for easy referencing between analytical equipment and/or images. This allows the time spend
on analytical equipment to be more effectively used for data collection rather than spending valuable time locating the
areas of interest.

This software also allows for tracking of the context of in-situ microanalysis by allowing reference to large images and
areas which will allow for new insights into what effects chemistry of given particles with reference to their location
and micro-environment. We can then track the analysis between different analytical equipment and make inferences
on macroscale processes from well characterised in-situ microanalysis1.

Although primarily designed for use of laser ablation analysis on geological material this software can be used for
any microanalytical technique, including electron microprobe analysis, x-ray fluorescence mapping, scanning electron
microscopy and ion beam analysis.

See also:

For outlined examples of how autopew is used, see Examples

1 Pearce, M. A., Godel, B. M., Fisher, L. A., Schoneveld, L. E., Cleverly, J. S., Oliver, N. H. S., and Nugus, M. (2017). Microscale data to
macroscale processes: a review of microcharacterization applied to mineral systems: Geological Society, London, Special Publications„ v. 453 doi:
10.1144/SP453.3.

3

usage/examples.html
https://doi.org/10.1144/SP453.3
https://doi.org/10.1144/SP453.3

autopew Documentation, Release 0.1.4

4 Chapter 2. Why use autopew

CHAPTER 3

What is autopew not?

• Not currently capable of 3D affine transforms (i.e. no ‘focus’ attribute).

The current development plan for autopew can be found here.

5

future.html

autopew Documentation, Release 0.1.4

6 Chapter 3. What is autopew not?

CHAPTER 4

Getting Started

4.1 Getting Started

Note: This page is under construction. Feel free to send through suggestions or questions.

4.1.1 Set up

To use this software you need in install Python. Anaconda is a great way to install python and included popular
software for editing and interacting with python script such as Spyder and Jupyter.

4.1.2 Installation

See also:

Installation

For in depth installation processes see the page above. For most purposes you should be able to install autopew by
typing the following in a terminal (“Anaconda Prompt” application on your computer if you’re using Anaconda)

pip install autopew

If you’re already installed autopew and would like the most up-to-date version, type this into a terminal:

pip install --upgrade autopew

4.1.3 Writing and editing code

autopew is designed to be very beginner friendly, but if you’re completely new to python consider visiting some free
online courses about the basic Python concepts. Codecademy is a great jumping off point.

7

https://www.anaconda.com/
https://www.spyder-ide.org/
https://jupyter.org/
../installation.html
https://www.codecademy.com/

autopew Documentation, Release 0.1.4

4.2 Installation

autopew is available on PyPi, and can be downloaded with pip:

pip install autopew

Note: autopew is not yet packaged for Anaconda, and as such conda install autopew will not work.

4.2.1 Upgrading autopew

New versions of pyrolite are released frequently. You can upgrade to the latest edition on PyPi using the --upgrade
flag:

pip install --upgrade autopew

4.3 Development Installation

autopew is a work in progress. The development version is in a public repository on GitHub. You can install it using
pip directly from there:

pip install git+https://github.com/morganjwilliams/autopew.git#egg=autopew
or, for the develop version
pip install git+https://github.com/morganjwilliams/autopew.git@develop#egg=autopew

Alternatively, you can also clone it locally and install with pip:

git clone https://github.com/morganjwilliams/autopew.git
cd autopew
e.g if you navigate to the directory
pip install .

If you want to contribute to autopew, you might want to use an editable installation locally to debug:

git clone https://github.com/morganjwilliams/autopew.git
cd autopew
e.g if you navigate to the directory
pip install -e .[dev]

8 Chapter 4. Getting Started

https://pypi.org/project/autopew/
https://pypi.org/project/autopew/
https://github.com/morganjwilliams/autopew

CHAPTER 5

Examples

5.1 Use Cases

autopew is designed for easy referencing between analytical equipment and/or images. This allows users to easily
transfer between techniques such as electron probe, laser ablation, scanning electron microscope or other imaging
techniques. autopew will allow consistent measurements of the same grains via different techniques and give spatial
context to chemical data.

There are a number of use cases that autopew is suited for:

5.1.1 Two Sets of Points

E.g. coordinates from stages This case is for transfer between various stage coordinate system (e.g. electron probe and
laser ablation) which can allow for measurement of the same grain with different techniques.

What you need:

• X,Y coordinates of the points you wish to analyse

9

autopew Documentation, Release 0.1.4

• at least 3 points in the new coordinate system

autopew can translate points with rotation, and shear.

See also:

stage2stage workflow

5.1.2 Image and Set of Points

If you have high resolution microscope images or images from other sources such as X-ray fluorescence mapping you
can use pixel coordinates and convert the chosen points to the new stage coordinates.

This allows you to pick phases for analysis before your analytical session without reducing the analytical time wasted
on locating and programming the coordinates of the phases of interest.

You can also mark analytical locations on a large image to give context information to the microanalysis by converting
stage coordinates to pixel coordinates.

What you need:

• an image of high enough resolution to identify the target phases

• 3 points in the new coordinate system that you can recognise on the image

See also:

image to stage workflow, stage to image workflow

5.1.3 Two Images

in development

See the contributions page on how to contribute.

10 Chapter 5. Examples

workflows/stage2stage.html
workflows/image2laser.html
workflows/stage2image.html
../dev/contributing.html

autopew Documentation, Release 0.1.4

This allows the pixel coordinates from one image to be translated into the pixel coordinates in a second image. This is
useful if you need to overlay two images such as an x-ray fluorescence image over a reflected light images

What you need:

• two images you wish to overlay

• 3 features you can recognise on both images

5.2 Examples

Here are some examples of what autopew can do and how you can do it. Before using these examples, please visit the
installation and getting started pages.

See also:

Installation , Getting Started

5.2.1 Workflows

This set of pages walks you through how to use autopew for each use case.

Image to Stage

This is a simple workflow example involving converting points registered on an image to coordinates for a specific
stage.

INPUT: image of sample

OUTPUT: coordinates for use in navigating sample

e.g we have been using this method to extract phases from reflected light imagery or X-ray fluorescence mapping and
assign numbers to grains to give spatial context to the multiple different micro-geochemical analysis.

Input and output can be easily changed for your purposes see the contributions page for more information on how to
contribute.

5.2. Examples 11

../installation.html
gettingstarted.html
../../dev/contributing.html

autopew Documentation, Release 0.1.4

Step 1: Acquire an Image and Register Points

• Aquire an image of your sample

• add points to your image

Once an image is acquired, points can be added using autopew directly or using external software (e.g. ImageJ or
Fiji*0). If you use ImageJ, export your points as a .csv file and follow the Stage to stage workflow which outlines
transforming a list of X,Y coordinates into a new translation. The following workflow is designed using the autopew
extensions.

For selection points directly in autopew here is an example:

Step 3: Calibrate the Transformation between the Image and Stage

• Pick a 3 or more calibration points

Note that the calibration of this transform involves a least-squares process to find the optimal transformation, such that
adding more calibration points can help avoid minor inaccuracies in adding points.

Step 4: Transform Image Point Coordinates to Stage Coordinates

• give the same reference points in the stage Coordinates (in this case laser reference coordinates)

• Use autopew to transform all pixel coordinates to stage coordinates. See the example code below:

Step 5: Export Points to for Stage Coordinates

• Export the transformed point stage coordinates to a file you can import into the software controlling
the stage.

import numpy as np
from pathlib import Path
from autopew import Pew
from autopew.workflow import pick_points

%% PICK THE ANALYSIS POINTS FROM AN IMAGE ---------------------------------
→˓---------------------------
have an image you wish to use?
imagepath = Path("./../../source/_static/") / "img.jpg"

pick sample coordinates from the image
Sample_points = pick_points(imagepath)

%% REFERENCE POINTS ---
→˓-----
#these are the known locations of the reference points on the laser stage
laser_REF_coords = np.array([

[74978,85419], #R1
[80259,75389], #R2
[90828,82571], #R3
[81465,74373]]) #R4

(continues on next page)

0 Schneider, C. A.; Rasband, W. S. & Eliceiri, K. W. (2012), “NIH Image to ImageJ: 25 years of image analysis”, Nature methods 9(7): 671-675,
PMID 22930834

12 Chapter 5. Examples

https://imagej.net/Welcome
https://imagej.net/Welcome
stage2stage.html

autopew Documentation, Release 0.1.4

(continued from previous page)

pick sample coordinates from the image
Sample_REF_points = pick_points(imagepath)

%% TRANSFORM --
→˓-
points = (Pew(Sample_REF_points,

laser_REF_coords)
.load_samples(Sample_points))

%% VISUALISE --
from autopew.util.plot import plot_transform
fig = plot_transform(

points.samples[['x', 'y']].values,
points.transformed[['x', 'y']].values,
invert0=[False, False],
invert1=[False, False]

)

%% EXPORT ---
lets save them so we can directly import them to the laser, with a known
→˓focal length (20744)
points.export_samples("samples.scancsv", z=20744)

See also:

output types

Optional Next Steps

• Export an aligned image.

Imported images can be realigned to the stage coordinate system for easier recognition of sample features and more
accurate visual determination of new point location. See stage to image

References

Stage to Image

This is a simple workflow example involving converting points from one stage coordinate system to display on a large
image. This helps to visualise where the analysis were collected and gives context to the anaysis.

INPUT:

• .csv - a list of X,Y coordinates with spotnames + more than 3 reference points

• large image with locations of more than 3 reference points

OUTPUT:

• image with points labelled

e.g. We have been using the workflow to visualise the microanalysis points from SEM on large reflected light images

5.2. Examples 13

../outputs.html
./stage2image.html

autopew Documentation, Release 0.1.4

Input and output can be easily changed for your purposes see the contributions page for more information on how to
contribute.

Step 1: Acquire image

• collect an image of the sample

• Remember to highlight 3 regions or more for registration points

Step 2: Calibrate and Transform the points between the the image and the stage

• Import your CSV file with analysed points

• specify your >3 reference coordinates using the autopew interactive interface

• specify the stage Coordinates of these reference points

• Use autopew to transform all stage coordinates. See the example code below:

Note that the calibration of this transform involves a least-squares process to find the optimal transformation, such that
adding more calibration points can help avoid minor inaccuracies in adding points.

from pathlib import Path
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from autopew import Pew
from autopew.workflow import pick_points

imagepath = Path("./../../source/_static/") / "SEM_RefPoints.png"

%% REFERENCE POINTS --
#these are the known locations of the reference points in the laser coordinate system
laser_reference_coords =np.array([[45633,9098], #R1-ccp55

[56683,17876], #R2-ccp33
[43301,16082], #R3-ccp38
[42096,5137]]) #R4-pn25

#pick the reference points on the image
img_reference_coords = pick_points(imagepath)

%% TRANSFORM laser to pixels ---
→˓--------
points = (Pew(laser_reference_coords,

img_reference_coords)
.load_samples('Samples.csv'))

14 Chapter 5. Examples

../../dev/contributing.html

autopew Documentation, Release 0.1.4

Step 4: Overlay the image and the points

• Export an image containing labelled point overlay over image

FIND THE PIXEL SIZE OF THE IMAGE
img = Image.open(imagepath)
get the image's width and height in pixels
width, height = img.size

fig, ax = plt.subplots()
ax.scatter(points.transformed['x'], points.transformed['y'],facecolors='none',
→˓edgecolors='y', marker="o",zorder=1,s=6,linewidth=.3)

for i, df in enumerate(points.transformed['name']):
ax.annotate(df, (points.transformed.x[i], points.transformed.y[i]),

xytext=(2, 0), textcoords='offset points',
horizontalalignment='left', verticalalignment='center',
size=4, color='yellow',
zorder=1)

ax.set(xlim=(0, width), ylim=(0, height))

plt.imshow(img, zorder=0)
ax.invert_yaxis()#image invert so it is the same up direction as import.

plt.tight_layout()
plt.show()
#fig.savefig('Export_image.png', transparent=True, dpi=800)

See also:

output types

Stage to Stage

This is a simple workflow example involving converting points from one stage coordinate system to another. This
workflow also works for importing .csv files of pixel x,y coordinates.

For this example we use:

INPUT: .csv - a list of x,y coordinates with names + more than 3 reference points

FORMAT: the transform requires column names of ‘x’ and ‘y’ and also recognises ‘name’ as spotnames

OUTPUT: pos, scancsv or csv file in laser coordinate system with corresponding spotnames

Input and output can be easily changed for your purposes see the contributions page for more information on how to
contribute.

e.g. We have been using the workflow to ensure measurement of the same grain on both scanning electron microscope
and the laser ablation system.

Step 1: Acquire coordinates

• save the coordinates of 3 or more registration points

• collect and save coordinates of phases of interest

5.2. Examples 15

../outputs.html
../../dev/contributing.html

autopew Documentation, Release 0.1.4

Step 2: Export Point Coordinates to CSV

• Export the stage-coordinates of your planned points in x-y format to a CSV.

Optionally, specify names for each of the points, which could be used as an index later.

Step 3: Calibrate and Transform the points between the two stages

• Use autopew to transform all stage coordinates. See the example code below:

Note that the calibration of this transform involves a least-squares process to find the optimal transformation, such that
adding more calibration points can help avoid minor inaccuracies in adding points.

Step 4: Export Points to for new Stage Coordinates

• Export the transformed point stage coordinates to a file you can import into the software controlling the new
stage.

from autopew import Pew
from autopew.util.plot import plot_transform

%% LOAD reference points and sample points ---
→˓----------------------
points = (Pew("Reference Points_source.csv",

"Reference Points_dest.csv")
.load_samples('Samples.csv'))

%% VISUALISE THE TRANSFORM ---
→˓------
fig = plot_transform(

points.samples[['x', 'y']].values,
points.transformed[['x', 'y']].values)

%% EXPORT ---
points.export_samples("Points_new.pos")
points.export_samples("Points_new.scancsv")
points.export_samples("Points_new.csv")

See also:

output types

16 Chapter 5. Examples

../outputs.html

autopew Documentation, Release 0.1.4

5.3 Output Types

The output types can be edited to suit the equipment you wish to use. The current output of coordinates are designed
for the following analytical equipment.

5.3.1 Laser Ablation system

The .scancsv current output is compatible with a Photonmachines (Teledyne) laser running on Chromium. This allows
for rapid input of X,Y coordinates into the laser system with spot labels either read from the source file, or numbered
sequentially.

Currently all other settings; including fine focus (z), spot size and laser conditions need to be changed manually after
import into the laser.

5.3.2 JEOL EPMA

The .pos files for the JEOL field-emission gun electron probe microanalyser (EPMA) using “probe for EPMA” soft-
ware. A default z value can be assigned for each export however fine focus will need to be changed manually.

5.3.3 TESCAN SEM

Work in Progress

Use of the TESCAN SEM system allows input and output of .XML format coordinates. Currently only allows export
and import of a single .xml file per sample. Multiple samples in a single .xml file is in development.

This export type does not include labels for points.

Focus is set per sample and needs to be manually adjusted for each analysis location.

5.3.4 Adding New IO Functionality

New file types can be configured around the autopew.io.PewIOSpecification interface, as have been done
for the above instruments. These will be automatically registered as file handlers where the file extension is unique. For
example, see the soure code specification for autopew.io.PewSCANCSV which includes a function for reading
.scancsv files into a consistent format and outputting data from that format into .scancsv files.

5.3. Output Types 17

http://www.teledynecetac.com/support/software

autopew Documentation, Release 0.1.4

18 Chapter 5. Examples

CHAPTER 6

Development

6.1 API

6.1.1 autopew

autopew.Pew

class autopew.Pew(*args, transform=None, archive=None, **kwargs)

calibrate(src, dest, handler=None, **kwargs)
Calibrate the transformation between two planar coordinate systems given two sets of corresponding
points.

Parameters

• src (str | pathlib.Path | numpy.ndarray | pandas.DataFrame)

• dest (str | pathlib.Path | numpy.ndarray | pandas.DataFrame)

• handler (str | tuple)

export_samples(filepath, enforce_transform=True, **kwargs)
Export a set of coordinates.

Parameters

• filepath (str | pathlib.Path) – Desired export filepath.

• enforce_transform (bool) – Whether to enforce transformation before export.

load_samples(filepath, handler=None, **kwargs)
Import a set of sample coordinates.

Parameters filepath (str | pathlib.Path | numpy.ndarray | pandas.DataFrame)

Returns

19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

autopew Documentation, Release 0.1.4

Return type pandas.DataFrame

to_archive(filepath)
Archive the coordinate mapping and calibration for later loading.

Parameters filepath (str | pathlib.Path)

transform_samples(samples=None, limits=None, **kwargs)
Transform sample coordinates to the destination coordinate system.

Parameters limits (list | numpy.ndarray)

Returns

Return type numpy.ndarray

6.1.2 autopew.transform

Submodule for calculating and visualising affine transforms between planar coordinate systems.

autopew.transform

Submodule for calculating and visualising affine transforms between planar coordinate systems.

autopew.transform.affine_from_AB(X, Y)
Create an affine transforamtion matrix based on two sets of coordinates.

Note:

• This is an augmented matrix, and includes the translation component

autopew.transform.affine

Submodule for calculating affine transforms between planar coordinate systems.

autopew.transform.affine.affine_from_AB(X, Y)
Create an affine transforamtion matrix based on two sets of coordinates.

Note:

• This is an augmented matrix, and includes the translation component

autopew.transform.affine.affine_transform(A)
Create an affine transform function based on affine matrix A.

autopew.transform.affine.compose_affine2d(T=array([[1., 0., 0.], [0., 1., 0.], [0.,
0., 1.]]), Z=array([[1., 0., 0.], [0.,
1., 0.], [0., 0., 1.]]), R=array([[1.,
0., 0.], [-0., 1., 0.], [0., 0., 1.]]))

Compose an affine transformation matrix based on translation, zoom and rotation components.

Parameters T, Z, R (numpy.ndarray) – Component affine transfrom matricies for
translation, zoom/scaling and rotation.

Returns A

20 Chapter 6. Development

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

autopew Documentation, Release 0.1.4

Return type numpy.ndarray

autopew.transform.affine.corners(size)

autopew.transform.affine.decompose_affine2d(A)
Decompose an affine transform into components using a polar transform.

Returns T, Z, R

Return type numpy.ndarray

Note: This decomposes the transform into the sequence rotation - zoom - translation.

To recompose this transform,

autopew.transform.affine.rotate(theta=0, degrees=True)
Generate a 2D affine rotation matrix.

Uses clockwise rotations.

autopew.transform.affine.shear(x=0, y=0)
Generate a 2D affine shear matrix.

autopew.transform.affine.translate(x=0, y=0)
Generate a 2D affine translation matrix.

autopew.transform.affine.zoom(x=1, y=1)
Generate a 2D affine zoom matrix.

autopew.transform.vis

autopew.transform.vis.vis(A, ax=None)
Visualise the effect of an affine transfrom on a unit square.

Parameters

• A (numpy.ndarray) – Affine matrix to visualise.

• ax (matplotlib.axes.Axes, None) – Axes to plot on.

Returns

Return type matplotlib.axes.Axes

6.1.3 autopew.io

File operations for autopew. Contains a class to provide an generalized interface to a series of file types/instruments
which can be built upon to add and register new IO capability.

autopew.io

File operations for autopew. Contains a class to provide an generalized interface to a series of file
types/instruments which can be built upon to add and register new IO capability.

class autopew.io.PewIOSpecification(*args, **kwargs)
Template for input and output file handlers for autopew.

These handers specify functions to import files to pandas DataFrames and the export of these file-
types from pandas DataFrames.

6.1. API 21

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes

autopew Documentation, Release 0.1.4

extension = None

type = None

classmethod validate_dataframe(df)
Validate the output of a file reader against the minimum requirements for autopew.

Parameters df (pandas.DataFrame) – Dataframe to validate.

class autopew.io.PewCSV(*args, **kwargs)

extension = '.csv'

classmethod read(filepath, **kwargs)

classmethod write(df, filepath, **kwargs)

class autopew.io.PewSCANCSV(*args, **kwargs)

extension = '.scancsv'

classmethod read(filepath)

classmethod write(df, filepath, **kwargs)

class autopew.io.PewJEOLpos(*args, **kwargs)

extension = '.pos'

classmethod write(df, filepath, **kwargs)

autopew.io.registered_extensions()
Get a dictionary of registered extensions mapping the relevant IO specifications.

Returns

Return type dict

autopew.io.laser.chromium

Import and export functions for the Chromium Laser Ablation Navigation Software.

autopew.io.laser.chromium.get_scandata(scandict)
Process a dictionary of scan information into a DataFrame.

Parameters scandict (dict) – Dictionary of scan data.

Returns

Return type pandas.DataFrame

See also:

ScanData

autopew.io.laser.chromium.read_lasefile(filepath, encoding=’cp1252’)
Read a .lase formatted file into a dictonary (one item per scan), and return this in the form of a
DataFrame.

Parameters

• filepath (str, pathlib.Path) – Path to the .lase file to import.

• encoding (str) – File encoding of the .lase file.

22 Chapter 6. Development

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str

autopew Documentation, Release 0.1.4

Returns

Return type DataFrame

Notes

.lase files have all spot information as well as gas flows and all control options of laser operation.
These are configuration files structured by blocks demarkated with square brackets, along the lines
of:

[Scans]
Header=Scan Type,Description, ...
Scan0=Spot,"Spot 1", ...
[<other control blocks>]
...

Some of the values in this table are string-encoded tuples (e.g. “57950.00,37530.00,20734.50”) and
dictionaries (e.g. “Dosage=1;DwellTime=1.00;LineSpacing=100.00;Laser.Output=10.00;. . . ”).

See also:

ScanData, get_scandata()

autopew.io.laser.chromium.read_scancsv(filepath, encoding=’cp1252’)
Read a .scancsv into a dictonary (one item per scan), and return this in the form of a DataFrame.

Parameters

• filepath (str, pathlib.Path) – Path to the .scancsv file to import.

• encoding (str) – File encoding of the .scancsv file.

Returns

Return type DataFrame

Notes

.scancsv files only contain spot information and do not edit the laser and gas conditions. These are
essentially comma-separated values files, with a structure along the lines of:

Scan Type,Description, ...
Spot,"Spot 1", ...

Some of the values in this table are string-encoded tuples (e.g. “57950.00,37530.00,20734.50”) and
dictionaries (e.g. “Dosage=1;DwellTime=1.00;LineSpacing=100.00;Laser.Output=10.00;. . . ”).

See also:

ScanData, get_scandata()

autopew.io.laser.chromium.split_config(s)
Splits a config-formatted string.

Parameters s (str)

Returns

Return type dict

6.1. API 23

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

autopew Documentation, Release 0.1.4

See also:

get_scandata()

autopew.io.laser.chromium.write_scancsv(df, filepath=PosixPath(’exportedpoints.scancsv’),
spotnames=None, encoding=’cp1252’,
z=20800, **kwargs)

Export an array of coordinates to a .scancsv file.

Parameters

• df (pandas.DataFrame) – Dataframe containing points to serialise.

• filepath (str | pathlib.Path) – Filepath for export.

• spotnames (str | list) – Name to prefix spot indicies or a list of spot names.

• encoding (str) – Encoding for the output file.

• z (int) – Optional specification of default focus value to use.

Returns

Return type pandas.DataFrame

autopew.io.EPMA.JEOL

Export function for the JEOL field-emission gun electron probe microanalyser (EPMA) using “probe for
EPMA”.

autopew.io.EPMA.JEOL.write_pos(df, filepath=PosixPath(’exportedpoints.pos’), encod-
ing=’cp1252’, z=10.7, **kwargs)

Export an dataframe of coordinates to a .pos file.

Parameters

• df (pandas.DataFrame) – Dataframe containing points to serialise.

• filepath (str | pathlib.Path) – Filepath for export.

• encoding (str) – Encoding for the output file.

• z (int) – Optional specification of default focus value to use.

Returns

Return type pandas.DataFrame

6.1.4 autopew.gui

autopew.gui

Basic Graphical User Interface support for autopew, allowing interactive the picking of analysis points.

6.1.5 autopew.image

Submoudle for working with image data, used in interactive elements of autopew.

24 Chapter 6. Development

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

autopew Documentation, Release 0.1.4

autopew.image

Submoudle for working with image data, used in interactive elements of autopew.

class autopew.image.PewImage(img, extent=None, transform=None)

affine_transform(A, resample=0, reversey=True, reverserotation=False)
Transform the image via an affine transformation matrix using PIL.

load_image(img)
Load an image and deal with formatting etc.

maprgb()
Convert the image to RGB arrays.

thumb(frac=0.05, resample=<Resampling.BILINEAR: 2>)
Return a thumbnail downsampled version of the image.

6.1.6 autopew.graph

Submodule for graph representation and use of chained affine transformations.

autopew.graph.network

class autopew.graph.network.Net
Network of transformations between objects.

This object stores the individual node objects including their properties and registration
points, in addition to the edges which involve specific coordinate transforms.

add_edge(A, B, transform=None, **kwargs)
Add an edge between components A and B. Optionally specify the specific transform.

Parameters
• A, B (str) – Names of components to link.
• transform (function) – Function to transform coordinates from A space to B

space.
• inverse_transform (function) – Function to transform coordinates from B

space to A space.

draw(ec=’k’, nc=’seagreen’, ax=None, figsize=(10, 10), method=<function draw_shell>)

edges

get_transform(A, B)
Get the function to transform coordinates between nodes A and B.

link(A, B, transform=<function autolink>, inverse_transform=<function autolink>,
**kwargs)

Link nodes A and B with transforms along edges.

nodes

update(name, obj, **kwargs)

autopew.graph.network.autolink(x)
Default link function.

6.1. API 25

https://docs.python.org/3/library/stdtypes.html#str

autopew Documentation, Release 0.1.4

6.1.7 autopew.util

Submodule containing a small set of utilities for autopew.

autopew.util.plot

autopew.util.plot.bin_centres_to_edges(centres)
Translates point estimates at the centres of bins to equivalent edges, for the case of evenly spaced
bins.

autopew.util.plot.bin_edges_to_centres(edges)
Translates edges of histogram bins to bin centres.

autopew.util.plot.data_to_pixels_transform(ax)

autopew.util.plot.plot_2dhull(data, ax=None, s=0, **plotkwargs)
Plots a 2D convex hull around an array of xy data points.

autopew.util.plot.plot_transform(src, dest=None, tfm=None, ref=None, ax=None,
sharex=False, sharey=False, invert0=[False,
True], invert1=[False, True], figsize=(10, 5),
titles=[’Source Coordinates’, ’Destination
Coordinates’], hull=True)

Visualise an affine transfrom.

autopew.util.meta

autopew.util.meta.autopew_datafolder(subfolder=None)
Returns the path of the autopew data folder.

Parameters subfolder (str) – Subfolder within the autopew data folder.

Returns

Return type pathlib.Path

autopew.util.meta.chain(lst)
Chain a series of fuctions together.

6.2 Development

autopew is currently hosted on GitHub at github.com/morganjwilliams/autopew; collaborator access can be granted
to interested parties. If you’re new to Git or GitHub, there are some useful guides on the GitHub Website.

6.2.1 Development Installation

To access and use the development version, you can either clone the repository or install via pip directly from GitHub:

pip install git+git://github.com/morganjwilliams/autopew.git@develop#egg=autopew

26 Chapter 6. Development

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://github.com/morganjwilliams/autopew
https://guides.github.com/
https://github.com/morganjwilliams/autopew

autopew Documentation, Release 0.1.4

6.2.2 Branches and GitFlow

There are two main git-branches for autopew:

• master is the latest stable release.

• develop is the development branch.

The Git workflow is based on GitFlow, where releases are branched from develop prior to being integrated into
master. Pull requests should be made against the develop branch.

6.2.3 Documentation

Documentation is currently live on ReadtheDocs.org <https://autopew.readthedocs.io>‘__ , but can also be built and
viewed locally using instructions below. The documentation is built using sphinx, and most pages are written in
reStructuredText. A quick reference can be found here.

Documentation for autopew is in the docs directory. From this directory, documentation can be built as follows:

To build documentation on windows:

to build and view the html version:
make html && cd ./build/html/ && index.html && cd ../..
or, to build and view the latex-pdf version:
make latex && cd ./build/latex/ && make.bat && autopew.pdf && cd ../..

Alternatively, there is a default build batch file makeviewhtml.bat also located in the docs directory, which
executes the commands above and will automatically build the docs and open the landing page:

to build and view the html version:
makeviewhtml.bat

6.2.4 Tests

If you clone the source repository, unit tests can be run using pytest from the root directory after installation:

python setup.py test

6.2.5 Continuous Integration

There are also some active continuous integration tools for autopew, including automated unit-testing on Travis-CI
and test coverage analysis on Codecov. The details for each of these are listed below.

Travis-CI

The Travis-CI page for autopew can be found at travis-ci.org/morganjwilliams/autopew.

Code Coverage

The coveralls page for autopew can be found at coveralls.io/github/morganjwilliams/autopew.

6.2. Development 27

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
http://www.sphinx-doc.org
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
https://travis-ci.org/morganjwilliams/autopew
https://coveralls.io/github/morganjwilliams/autopew?branch=develop
https://travis-ci.org/morganjwilliams/autopew
https://coveralls.io/github/morganjwilliams/autopew

autopew Documentation, Release 0.1.4

6.3 Changelog

All notable changes to this project will be documented here.

6.3.1 Development

Note: Changes noted in this subsection are to be released in the next version. If you’re keen to check something out
before its released, you can use a development install.

6.3.2 0.1.3

6.3.3 0.1.2

6.3.4 0.1.1

• Expanded development documentation.

• Updated installation instructions.

• Added basic documentation examples and a workflow runthrough.

• Added a network-based transformation concept example.

autopew.transform

• Added autopew.transform.CoordinateTransform, inverse affine transform

6.3.5 0.1.0 (Unreleased)

6.3.6 0.0.2

• Added PyQT requirement for GUI-based point-picking.

autopew.gui

• Update for GUI point selection to add refreshing timeout.

• Renamed image_registration() to image_point_registration(); later moved to autopew.
util.gui.image_point_registration()

• Added differentiated handling of mouse events for panning, zooming and clicking in autopew.util.gui

autopew.registration

• Updated autopew.registration.RegisteredImage image handling to allow load from
path/array/existing image.

• Added set_calibration_pixelpoints() for setting calibration points for a registered image.

28 Chapter 6. Development

development.html#development-installation

autopew Documentation, Release 0.1.4

autopew.session

• Added load_image(), points_from_csv(), autoflow() and stubs for reorder_analyses(),
standard_bracket() (neither implemented in this version).

• Added an automated workflow for export of coordinates from a CSV, image and stage coordinates in
autoflow().

autopew.transform

• Added a rcond switch for numpy.linalg.lstsq() for Python <= 3.6 in autopew.transform.
calibration due to recurring errors.

autopew.util

• Added autopew.util.readlase for reading specific laser analysis files.

6.3.7 0.0.1

• First version of the package, with capability for basic point-point and image-point calibration/registration.

• Added submodules autopew.session, autopew.targets, autopew.gui, autopew.
transform.calibration, autopew.registration, autopew.util

• Added some basic tests.

6.4 Future

This page details some of the under-development and planned features for autopew. Note that while no schedules are
attached, features under development are likely to be completed with weeks to months, while those ‘On The Horizon’
may be significantly further away (or in some cases may not make it to release).

Initial development focuses on work relevant to LA-ICP-MS workflows, and the project may later generalise some of
these workflows.

6.4.1 Current Release

• Able to register points on one image

• Able to calibrate these points to the laser stage coordinates

• Able to output the image with points on it

• Able to output a .scancsv file to import into the laser software

• Able to import point names

6.4.2 Under Development

• Be able to set spotsizes

• Be able to read and set z position

6.4. Future 29

https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html#numpy.linalg.lstsq

autopew Documentation, Release 0.1.4

• Be able to recognise when point is positioned outside stage limits

• Be able to transform maps with points on them so correspondence is easier to see

• Should be able to work from multiple maps –> need multiple registered images

• Overlay images (see post here)

• Serialising coordinate transform systems for later use

6.4.3 On The Horizon

• Activities to optimise instrument usage time:

– Sample-standard bracketing using a specific ‘reference mount location’ (needs to be updated later)

– Reordering points based on their positions.

– Standard area registration, gridded ‘free positions’- auto sample standard bracketing

• Report templates

• Dealing with larger images (>20 MB - jpg will warn of compression bomb)

6.5 Code of Conduct

6.5.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body size,
disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic
status, nationality, personal appearance, race, religion, or sexual identity and orientation.

6.5.2 Our Standards

Examples of behaviour that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behaviour by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

30 Chapter 6. Development

https://stackabuse.com/affine-image-transformations-in-python-with-numpy-pillow-and-opencv/

autopew Documentation, Release 0.1.4

6.5.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behaviour and are expected to take
appropriate and fair corrective action in response to any instances of unacceptable behaviour.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviours that they deem inappropriate, threatening, offensive, or harmful.

6.5.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

6.5.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behaviour may be reported by contacting the project admins.
All complaints will be reviewed and investigated and will result in a response that is deemed necessary and appropriate
to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

6.5.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant Version 1.4, available at https://www.
contributor-covenant.org/version/1/4/code-of-conduct.html. The Contributor Covenant is released under the Creative
Commons Attribution 4.0 License.

For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq.

6.6 Contributing

autopew welcomes community contributions of all forms. Requests for features and bug reports are particularly
valuable contributions, in addition to code and expanding the documentation.

All individuals contributing to the project are expected to follow the Code of Conduct, which outlines community
expectations and responsibilities.

Also, be sure to add your name or GitHub username to the contributors list.

Note: This project is currently in alpha, and as such there’s much work to be done.

6.6. Contributing 31

https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.contributor-covenant.org/faq
../conduct.html
./contributors.html

autopew Documentation, Release 0.1.4

6.6.1 Feature Requests

If you’re new to Python, and want to implement something as part of autopew, you can submit a Feature Request.
Perhaps also check the Issues Board first to see if someone else has suggested something similar (or if something is in
development), and comment there.

6.6.2 Bug Reports

If you’ve tried to do something with autopew, but it didn’t work, and googling error messages didn’t help (or, if the
error messages are full of autopew.XX.xx), you can submit a Bug Report . Perhaps also check the Issues Board
first to see if someone else is having the same issue, and comment there.

6.6.3 Contributing to Documentation

The documentation and examples for autopew are gradually being developed, and any contributions or corrections
would be greatly appreciated. Currently the examples are patchy, and a ‘getting started’ guide would be a helpful
addition. If you’d like to edit an existing page, the easiest way to get started is via the ‘Edit on GitHub’ links:

These pages serve multiple purposes:

• A human-readable reference of the source code (compiled from docstrings).

• A set of simple examples to demonstrate use and utility.

• A place for developing extended examples

6.6.4 Contributing Code

Code contributions are always welcome, whether it be small modifications or entire features. As the project gains
momentum, check the Issues Board for outstanding issues, features under development. If you’d like to contribute, but
you’re not so experienced with Python, look for good first issue tags or email the maintainer for suggestions.

To contribute code, the place to start will be forking the source for autopew from GitHub. Once forked, clone a
local copy and from the repository directory you can install a development (editable) copy via python setup.py
develop. To incorporate suggested changes back to into the project, push your changes to your remote fork, and
then submit a pull request onto autopew/develop .

Note:

• See Installation for directions for installing extra dependencies for development, and Development for informa-
tion on development environments and tests.

• autopew development roughly follows a gitflow workflow. autopew/master is only used for releases, and
large separable features should be build on feature branches off develop.

• Contributions introducing new functions, classes or entire features should also include appropriate tests where
possible (see Writing Tests, below).

• autopew uses Black for code formatting, and submissions which have passed through Black are appreciated,
although not critical.

32 Chapter 6. Development

https://github.com/morganjwilliams/autopew/issues/new?labels=enhancement&template=feature-request.md
https://github.com/morganjwilliams/autopew/issues
https://github.com/morganjwilliams/autopew/issues/new?labels=bug&template=bug-report.md
https://github.com/morganjwilliams/autopew/issues
https://autopew.readthedocs.io
https://github.com/morganjwilliams/autopew/issues
https://github.com/morganjwilliams/autopew/tree/develop
https://github.com/morganjwilliams/autopew/tree/develop
../installation.html
development.html
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://github.com/python/black/

autopew Documentation, Release 0.1.4

6.6.5 Writing Tests

There is currently a minimal unit test suite for autopew, which guards against breaking changes and assures baseline
functionality. autopew uses continuous integration via Travis, where the full suite of tests are run for each commit
and pull request, and test coverage output to Coveralls.

Adding or expanding tests is a helpful way to ensure autopew does what is meant to, and does it reproducibly. The
unit test suite one critical component of the package, and necessary to enable sufficient trust to use autopew for
scientific purposes.

6.7 Contributors

This list includes people who have contributed to the project in the form of code, comments, testing, bug reports, and
feature requests.

• Louise Schoneveld

• Morgan Williams

Note: This documentation is a work in progress and is updated regularly. Contact the maintainers with any specific
questions/requests.

6.7. Contributors 33

https://travis-ci.org/morganjwilliams/autopew
https://coveralls.io/github/morganjwilliams/autopew
https://github.com/lavender22
https://github.com/morganjwilliams

autopew Documentation, Release 0.1.4

34 Chapter 6. Development

CHAPTER 7

References

35

autopew Documentation, Release 0.1.4

36 Chapter 7. References

Python Module Index

a
autopew.graph, 25
autopew.graph.network, 25
autopew.gui, 24
autopew.image, 25
autopew.io, 21
autopew.io.EPMA.JEOL, 24
autopew.io.laser.chromium, 22
autopew.transform, 20
autopew.transform.affine, 20
autopew.transform.vis, 21
autopew.util.meta, 26
autopew.util.plot, 26

37

autopew Documentation, Release 0.1.4

38 Python Module Index

Index

A
add_edge() (autopew.graph.network.Net method), 25
affine_from_AB() (in module autopew.transform),

20
affine_from_AB() (in module au-

topew.transform.affine), 20
affine_transform() (autopew.image.PewImage

method), 25
affine_transform() (in module au-

topew.transform.affine), 20
autolink() (in module autopew.graph.network), 25
autopew.graph (module), 25
autopew.graph.network (module), 25
autopew.gui (module), 24
autopew.image (module), 25
autopew.io (module), 21
autopew.io.EPMA.JEOL (module), 24
autopew.io.laser.chromium (module), 22
autopew.transform (module), 20
autopew.transform.affine (module), 20
autopew.transform.vis (module), 21
autopew.util.meta (module), 26
autopew.util.plot (module), 26
autopew_datafolder() (in module au-

topew.util.meta), 26

B
bin_centres_to_edges() (in module au-

topew.util.plot), 26
bin_edges_to_centres() (in module au-

topew.util.plot), 26

C
calibrate() (autopew.Pew method), 19
chain() (in module autopew.util.meta), 26
compose_affine2d() (in module au-

topew.transform.affine), 20
corners() (in module autopew.transform.affine), 21

D
data_to_pixels_transform() (in module au-

topew.util.plot), 26
decompose_affine2d() (in module au-

topew.transform.affine), 21
draw() (autopew.graph.network.Net method), 25

E
edges (autopew.graph.network.Net attribute), 25
export_samples() (autopew.Pew method), 19
extension (autopew.io.PewCSV attribute), 22
extension (autopew.io.PewIOSpecification attribute),

21
extension (autopew.io.PewJEOLpos attribute), 22
extension (autopew.io.PewSCANCSV attribute), 22

G
get_scandata() (in module au-

topew.io.laser.chromium), 22
get_transform() (autopew.graph.network.Net

method), 25

L
link() (autopew.graph.network.Net method), 25
load_image() (autopew.image.PewImage method), 25
load_samples() (autopew.Pew method), 19

M
maprgb() (autopew.image.PewImage method), 25

N
Net (class in autopew.graph.network), 25
nodes (autopew.graph.network.Net attribute), 25

P
Pew (class in autopew), 19
PewCSV (class in autopew.io), 22
PewImage (class in autopew.image), 25
PewIOSpecification (class in autopew.io), 21

39

autopew Documentation, Release 0.1.4

PewJEOLpos (class in autopew.io), 22
PewSCANCSV (class in autopew.io), 22
plot_2dhull() (in module autopew.util.plot), 26
plot_transform() (in module autopew.util.plot), 26

R
read() (autopew.io.PewCSV class method), 22
read() (autopew.io.PewSCANCSV class method), 22
read_lasefile() (in module au-

topew.io.laser.chromium), 22
read_scancsv() (in module au-

topew.io.laser.chromium), 23
registered_extensions() (in module au-

topew.io), 22
rotate() (in module autopew.transform.affine), 21

S
shear() (in module autopew.transform.affine), 21
split_config() (in module au-

topew.io.laser.chromium), 23

T
thumb() (autopew.image.PewImage method), 25
to_archive() (autopew.Pew method), 20
transform_samples() (autopew.Pew method), 20
translate() (in module autopew.transform.affine), 21
type (autopew.io.PewIOSpecification attribute), 22

U
update() (autopew.graph.network.Net method), 25

V
validate_dataframe() (au-

topew.io.PewIOSpecification class method),
22

vis() (in module autopew.transform.vis), 21

W
write() (autopew.io.PewCSV class method), 22
write() (autopew.io.PewJEOLpos class method), 22
write() (autopew.io.PewSCANCSV class method), 22
write_pos() (in module autopew.io.EPMA.JEOL), 24
write_scancsv() (in module au-

topew.io.laser.chromium), 24

Z
zoom() (in module autopew.transform.affine), 21

40 Index

	Introduction
	Why use autopew
	What is autopew not?
	Getting Started
	Examples
	Development
	References
	Python Module Index
	Index

